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a b s t r a c t 

With the increasing popularity of pervasive devices such as smartphones and Internet-of-Things devices, 

mobile e-Healthcare has become a research trend in recent years. Disease risk prediction using big data 

analytics techniques is one popular e-Healthcare research focus, and one associated research challenge 

is ensuring the privacy of user and patient data. In this paper, we propose a new efficient and privacy- 

preserving pre-clinical guidance scheme (hereafter referred to as PGuide) for mobile eHealthcare, de- 

signed to offer both self-diagnosis and hospital recommendation services to users in a privacy-preserving 

way. To provide users the capability to present a detailed health profile for accurate disease risk predic- 

tion, we introduce a privacy-preserving comparison protocol (PPCP) in PGuide, which will improve the 

accuracy of disease risk prediction. We also employ a single-attribute encryption technique to devise a 

privacy-preserving hospital recommendation service in PGuide, which can further guide users to choose 

a hospital appropriate for their visit after conducting a self-diagnosis. We then prove that PGuide can 

achieve the privacy-preservation requirements in both self-diagnosis and hospitals recommendation ser- 

vices. We also conduct a number of experiments, which demonstrate the efficiency of PGuide, in terms 

of computational cost and communication overhead. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

One of the most pressing issues facing hospital administration

s the shortage of medical doctors, particularly with the increasing

umber of patients and in an ageing population. This has resulted

n an increased waiting time for patients in many countries. For

xample, a patient has to wait on average of more than 20 min-

tes in U.S. [1] , between 4 and 24 hours to be seen in a hospi-

al in Canada [2] , and significantly longer in China [3,4] . Patients

re unlikely to be familiar with medical departments in hospitals

nd most are certainly not familiar with the symptoms associated

ith the different diseases. For example, there are approximately

0 different types of doctors and specialists [5] in a typical hos-

ital, and it would be a frustrating and time-wasting exercise if a

atient consults a doctor not trained or specialized in the particu-

ar disease. Some major hospitals have established manned inquiry

ounters to guide patients (e.g. which department or specialist the

atient should go to), but this is not a viable solution due to a
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umber of reasons. For example, a patient is unlikely or willing

o share sensitive health-related issues, such as HIV and mental

llness, publicly over the manned inquiry counters. Therefore, we

eed an effective solution to help ease the stretch on existing lim-

ted medical resources in hospitals. 

Due to the increasing digitization of our society and popularity

f pervasive devices (e.g. smartphones), where most of our data

including healthcare related data) are available electronically, us-

ng big data analytics to solve several healthcare related issues (e.g.

isease risk prediction) has been the subject of recent research

ocus. However, little progress has been made in the commercial

ntegration of processing clinical analytics while assuring the pri-

acy of the sensitive medical information [6] . For example, how

an we be assured that our sensitive medical information are not

een made available and exploited by third-party companies, such

s insurance companies and future employers? In addition to the

rivacy requirements of medical users, information leakage is a

ajor concern for service providers as medical providers in coun-

ries such as U.S. are subject to exacting regulatory regime (e.g.

IPAA). Some recent works [7,8] discuss that the big data protec-

ion and privacy protection has become one of the hot issues in

he researches about medical data analysis. 
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In order to address the above-mentioned privacy challenges,

and improve the accuracy of disease risk prediction (and resulting

in a shorter queue in hospitals), we propose an efficient privacy-

preserving pre-clinical guidance service scheme (PGuide) designed

to provide on-the-go medical guidance service while preserving

user privacy. Different from our previous work [9] , using the

PGuide scheme proposed in this work, users can personally con-

duct privacy-preserving pre-clinical diagnosis based on their health

profiles [10] and obtain recommendation from trusted sources (e.g.

hospitals and medical service providers) based on the diagnosis.

Specifically, the proposed PGuide ensures that an user is unable

to learn the coefficients, the tercept and the threshold in the risk

model for a disease, while pretects the user’s health profile in-

formation being disclosed to the service provider. In addition, the

information transmitted to the hospitals and other medical ser-

vice providers to calculate the disease risk use a disease prediction

model in a privacy-preserving way. Specifically, We then prove that

our proposed PGuide scheme achieves the privacy-preservation

for both the individual user and the medical service provider. To

demonstrate the practicality of our scheme, we develop an Android

app and a Java service application. Based on the findings from our

evaluations, we show that our proposed PGuide scheme is efficient,

in terms of computational cost and communication overhead. 

The remainder of this paper is organized as follows. In

Section 2 , we introduce our system model, security model and de-

sign goal. In Section 3 , we introduce the preliminaries required to

understand our proposed scheme, prior to presenting our scheme

in Section 4 . The security analysis and performance evaluation are

provided in Section 5 and Section 6 , respectively. We also discuss

the related work in Section 7 . Section 8 concludes this paper. 

2. Models and design goal 

In this section, we formalize the system model, security model,

and our design goal. 

2.1. System model 

In our system model, we focus on the disease risk calculation

for users with the help of one or more medical service providers.

In other words, our system model comprises four entities, namely:

a group of m hospitals H = { H 1 , H 2 , . . . , H m 

} , a healthcare center as

the trust authority (TA), a service provider (SP), and a number of

users U = { U 1 , U 2 , . . . , U N } . The system model is illustrated in Fig. 1 ,

where N, m indicate the numbers of medical users and hospitals,

respectively. 
Fig. 1. System model un
• Healthcare center (TA): Healthcare center is a trusted entity,

mainly responsible for initializing the system key materials for

hospitals and medical users. 

• Hospitals H = { H 1 , H 2 , . . . , H m 

} : Each hospital H j ∈ H needs to

have a one-off registration with the TA prior to processing

user’s disease queries, providing feedback to SP when it has the

available resources (e.g. medical doctors) to treat the specific

disease or not (i.e. “no”), etc. 

• Service Provider (SP): SP is the core entity, and is responsible

for information processing, building the disease risk prediction

model, and providing disease risk calculation service to users

based on the their health profiles. In addition, SP directs disease

queries from users to the relevant hospitals, as well as recom-

mending available hospitals to the users. 

• Users U = { U 1 , U 2 , . . . , U N } : Each user U i ∈ U has installed our

app on their smartphone(s). The app collects the user’s health

profile, sends them in a privacy-preserving way to the SP, and

receives the recommendations from the SP. 

.2. Security model 

In our security model, we consider both SP and U = { U 1 ,

 2 , . . . , U N } are honest-but-curious . That is, SP will faithfully fol-

ow the disease risk diagnosis protocol, but also attempt to learn

he users’ sensitive health profile data. In addition, users U =
 U 1 , U 2 , . . . , U N } are also honest-but-curious , i.e. each U i will not re-

ort false data, but may attempt to learn SP’s disease risk predi-

ation model, which is regarded as SP’s intellectual property (IP).

e also assume that due to vested interest (e.g. reputation risk

nd criminal sanctions), a SP is not in collusion with the hospitals.

herefore, the following security requirements should be satisfied

n the pre-clinical system. 

• Privacy Preservation. Ensuring the privacy of user’s sensitive

health profile from SP is necessary, i.e. SP cannot learn user’s

medical history and other sensitive information (e.g. blood

type). In addition, information about user’s diagnosis should

not be learned by SP, and we assume that SP does not collude

with the hospitals. It is also necessary to protect SP’s disease

prediction model (i.e. IP). 

• Authentication. Authenticating the hospitals’ recommendations

to the users is important. For example, if a non-registered hos-

pital (i.e. a hospital that has not been vetted as having appro-

priate standard) is recommended to the user, this could result

in fatalities and subsequent law suits. Therefore, in the hospi-
der consideration. 
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tal recommendation system, only hospitals that have registered

with the TA can receive the user request. 

We acknowledge that there are several other security attacks,

uch as forgery attacks and background attacks, in a typical disease

isk calculation system. Since our focus is on privacy-preserving

isease risk prediction, attacks not targeting privacy issue are be-

ond the scope of this paper, and will be discussed in future work.

.3. Design goal 

Our design goal is to develop a privacy-preserving pre-clinical

uidance scheme to provide disease risk prediction and hospital

ecommendation. A practical outcome of this scheme is to reduce

he waiting time of a patient at a hospital. Using our scheme, a

ser seeking medical attention can have access to the disease risk

redication services and hospital recommendation services from

he medical service provider, without compromising on the privacy

f user and SP. More specifically, the following two goals should be

chieved. 

• The proposed scheme should be effective, in terms of computa-

tion and communication. Despite the increase in computational

resources available in smartphones, the storage and battery life

are somewhat limited. Therefore, it is necessary to ensure that

only lightweight computations are performed at the user-end

and at the same time, do not overload the servers at SP or hos-

pital. 

• The security requirement should be guaranteed. If users are not

assured that their health profiles are protected, then users will

hesitate to (or not) use this service. Similarly, if the disease pre-

diction model is not protected, then SP will not participate due

to IP concerns. Therefore, the proposed scheme should also en-

sure that participating hospitals are authenticated. 

. Preliminaries 

In this section, we revisit the disease risk model of Ayday, et al.

11] , use the underlying disease risk threshold ( S th ) and bilinear

airings [12] as the basis of our PGuide scheme. 

.1. Disease risk model 

Many diagnosis prediction models combine patient characteris-

ics and environmental data to predict the presence or absence of a

ertain diagnosis [13] . The association between each symptom and

 disease is expressed by the odds ratio (OR), which is the ratio of

dds in a group of individuals having the symptom to that of those

ho do not have. The OR OR i of a disease Y i for some symptom

redictors A i = { a 1 , a 2 , . . . , a m 

} , with each predictor value a j ∈ {0, 1}

or j = 1 , 2 , . . . , m, is generally represented in terms of regression

oefficients B i = { b 1 , b 2 , . . . , b m 

} of the same length m . In this way,

he predicted risk of the disease Y i with regards to the symptom

 i can be calculated as: 

 (Y i = 1 | A i ) = 

1 

1 + exp (−(γ + 

∑ m 

j=1 a j · b j )) 
, (1)

here γ is an estimated intercept in the model. This model has

een widely used in the medicine and clinician fields for disease

isk tests and predictions [13] . To simplify the risk score calcu-

ation, the overall disease risk score S corresponding to the risk

 = P (Y i = 1 | A i ) = 

1 
1+ exp (−(γ + S)) can be computed by 

 = ln 

P 

1 − P 
= γ + 

m ∑ 

j=1 

a j · b j (2)

or a complete description of the logistic regression model, we re-

er the interested reader to [13] . 
.2. Determination of disease risk threshold 

In the above disease risk model, the regression coefficients

 i = { b 1 , b 2 , · · · , b m 

} and the estimated intercept γ for predict-

ng some disease Y i can be derived from the logistic regression

odel with a large volume of real-world medical data. In order

o determine whether a user U l ∈ U with the symptom predictors

 i = { a 1 , a 2 , · · · , a m 

} has the disease Y i with a high probability, we

an set a disease risk threshold S th . If γ + 

∑ m 

j=1 a j · b j ≥ S th , then

e can infer that user U l has disease Y i with a high probabil-

ty. Otherwise, when γ + 

∑ m 

j=1 a j · b j < S th , we infer that U l has Y i 
ith a low probability. Because the disease risk model is an as-

et, the values (B i = { b 1 , b 2 , · · · , b m 

} , γ , S th ) should be kept private

i.e. privacy-preserving requirement). In the next section, we will

resent our PGuide scheme, which utilizes the disease risk model

n an efficient and privacy-preserving way to achieve pre-clinical

uidance for medical user. 

.3. Bilinear pairings 

Let G , G T be two multiplicative cyclic groups with the same

rime order q . Suppose G and G T are equipped with a pairing,

.e. a non-degenerated and efficiently computable bilinear map e :

 × G → G T , such that e (g a 
1 
, g b 

2 
) = e (g 1 , g 2 ) 

ab ∈ G T for all a, b ∈ Z 

∗
q ,

nd any g 1 , g 2 ∈ G in group G , the Computational Diffie-Hellman

CDH) problem is hard. For the latter, given ( g, g a , g b ) for g ∈ G

nd unknown a, b ∈ Z 

∗
q , it is intractable to compute g ab in a poly-

omial time. However, the Decisional Diffie-Hellman (DDH) prob-

em is easy. In other words, given ( g, g a , g b , g c ) for g ∈ G and un-

nown a, b, c ∈ Z 

∗
q , it is easy to determine whether c = ab mod q

y checking e (g a , g b ) 
? = e (g c , g) . 

efinition 1. A bilinear parameter generator gen is a probabilis-

ic algorithm that takes a security parameter k as input, and out-

uts a 5-tuple (q, g, G , G T , e ) , where q is a k -bit prime number, and

 : G × G → G T is a non-degenerated and efficiently computable

ilinear map. 

. Proposed PGuide scheme 

In this section, we propose our PGuide scheme. The scheme

onsists of two main phases, namely: a system setting and privacy-

reserving pre-clinical guidance, together with its correctness anal-

sis. The pre-clinical guidance scheme has a privacy-preserving

re-disease diagnosis and a privacy-preserving hospital recommen-

ation. 

.1. System setting 

The TA located at the healthcare center will bootstrap the

ecommendation system. Specifically, given the security parame-

er k , TA generates the bilinear parameters (q, g, G , G T , e ) by run-

ing gen ( k ), and chooses a secure symmetric encryption algorithm

nc () (i.e. AES) [14] . In addition, TA chooses two random numbers

(a, x ) ∈ Z 

∗
q , as the master key, two random elements ( h 1 , h 2 ) in

 , and computes b = H(a ) , A = g a , and e ( g, g ) x . Finally, TA keeps

he master key ( a, b, x ) secret, and publishes the system parameter

params = (q, g, G , G T , e, h 1 , h 2 , A, e (g, g) x , Enc()) . 

When each hospital H j registers itself with the healthcare cen-

er, TA chooses two random numbers (t j1 , t j2 ) ∈ Z 

∗
q , and computes

he access control key ak j = (g x + at j1 , g t j1 , g t j2 , h 
t j1 
1 

h 
t j2 
2 

) for the hos-

ital H j . The data acquisition process is crucial. For example, it

as estimated that almost 80% of the time and effort is spent in

leaning and preparing real-world medical data before the data

an be used by disease risk prediction model [6] . Therefore, in

he system setting phase of PGuide, a trustworthy data analytic
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Table 1 

For each disease, we obtain the corresponding regression coefficients, 

the estimated intercept, the disease risk threshold, and the question set. 

Disease C oefficients γ S th Question set 

Y 1 { b 1,1 , b 2,1 , ���, b m ,1 } γ 1 S th , 1 { q 1,1 , q 2,1 , ���, q m ,1 } 

Y 2 { b 1,2 , b 2,2 , ���, b m ,2 } γ 2 S th , 2 { q 1,2 , q 2,2 , ���, q m ,2 } 

Y 3 { b 1,3 , b 2,3 , ���, b m ,3 } γ 3 S th , 3 { q 1,3 , q 2,3 , ���, q m ,3 } 

... 

Y n { b 1, n , b 2, n , ���, b m,n } γ n S th ,n { q 1, n , q 2, n , ���, q m,n } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Parameters setting for PPCP. 

PPCP Parameter | p | | β| | α| | r i | | q | | m | 

Security Parameter l 0 l 1 l 2 l 3 l 4 l 5 

| x | means the bit length of x . 
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l1 0 2 4 5 1 2 1 3 4 5 0 
company first communicates with hospitals to construct the dis-

ease risk model, and determines the regression coefficients B i =
{ b 1 , b 2 , · · · , b m 

} , the estimated intercept γ i and the disease risk

threshold S th ,i for each disease Y i using some data mining meth-

ods [15,16] . For example, the disease predictors for Parkinson’s

Synucleinopathy-associated disease [10] include hyposmia, urinary

dysfunction, specific sleep disturbances, depressive symptoms, and

constipation. 

According to each defined predictor a j ∈ A i = { a 1 , a 2 , · · · , a m 

} of

a disease Y i , a corresponding question q j ∈ Q i = { q 1 , q 2 , · · · , q m 

} is

designed. For instance, as urinary dysfunction is an impact predic-

tor of Parkinson’s disease, we design the question “Do you have in-

creased urinary frequency and urgency? ”, and the answer of each

question q i is in a j ∈ {0, 1}. Specifically, the result of the setup is

shown in Table 1 . In addition to the above setting, a smartphone-

based PGuide application is also developed for medical users to ob-

tain medical self-diagnosis and hospital recommendation services. 

4.2. Privacy-preserving pre-clinical guidance 

Pre-Disease Diagnosis. In the system setting, for each disease

Y i , we design a question set ( q j ∈ Q i = { q 1 , q 2 , · · · , q m 

} ), and the an-

swer for each question q i can be mapped to a binary value a i ∈ {0,

1}. The general procedure of pre-clinical disease diagnosis can be

described as follows: 

• With the smartphone-based PGuide application, a user U l ∈ U

chooses a disease Y i that the user wishes to diagnose. A cor-

responding question set Q i = { q 1 , q 2 , · · · , q m 

} will be shown in

the application. After the U l has answered all these questions
Fig. 2. Description of
Q i , the answers representing U l ’s health profile will be mapped

to a binary vector A i = { a 1 , a 2 , · · · , a m 

} and transmitted to SP. 

• Upon receiving A i , SP will query the database to obtain the

weighted coefficients B i = { b 1 , b 2 , · · · , b m 

} , the intercept γ i 

and the threshold S th ,i for the chosen disease Y i . Then, SP

will compute A i · B i + γi = 

∑ m 

j=1 a j · b j + γi ≥ S th,i and determine

whether U l has the disease Y i with a high possibility. Finally,

the result will be returned to U l . 

• Upon receiving the result, U l will decide whether a doctor or a

specialist needs to be consulted. 

However, the above general pre-clinical procedure does not en-

ure the user’s privacy. Therefore, in the following, we introduce

 privacy-preserving comparison protocol (PPCP) in PGuide to en-

ure that another user is unable to learn the coefficients B i =
 b 1 , b 2 , · · · , b m 

} , the intercept γ i and the threshold S th ,i in the risk

odel for the disease Y i , and will not result in the disclosure of

he user’s health profile information A i = { a 1 , a 2 , · · · , a m 

} to SP. The

ain steps of PPCP are summarized as follows, as shown in Fig. 2 ,

here � a = A i = { a 1 , a 2 , · · · , a m 

} ∈ F m 

2 
and 

�
 b = B i = { b 1 , b 2 , · · · , b m 

} ∈
 

m 

q . We remark that in the pre-clinical model, all the original b i 
 b i > 0) are weighted coefficients, and each b i is a small real num-

er. For the efficient computation in PPCP, each b i is expanded

0,0 0 0 times, such that all { b 1 , b 2 , ���, b m 

} are integer values ly-

ng in F m 

q with q = 2 16 . To ensure correctness and security of the

roposed PPCP protocol, the security parameters ( l 0 , l 1 , l 2 , l 3 , l 4 , l 5 )

re choosen first by the user U l . For the reader’s convenience, the

elationship between the PPCP parameters to be used and these

ecurity parameters are summarized and shown in the Table 2 . 

The constraints of these security parameters are as follows:

 < l , 3 l + l + l < l , 2 l + l + l + l + l < l − 1 . 
 PPCP protocol. 
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Step 1: The user U l chooses three large primes, α, β , p such that

 α| = l 2 , | β| = l 1 , | p| = l 0 , a random number s ∈ Z 

∗
p , and computes

 

−1 mod p. 

Step 2: For each a i ∈ 

�
 a , three random numbers ( x i , y i , r i )

re chosen with the constraint x i + y i = r i · β, 
r i ·β

2 < y i < r i · β
nd | r i | = l 3 U l computes the vectors �

 c = { c 1 , c 2 , · · · , c m 

} , � c ′ =
 c ′ 

0 
, c ′ 

1 
, c ′ 

2 
, · · · , c ′ m 

} , where each (c i , c 
′ 
i 
) is 

c i = α · a i + x i , c ′ i = s · y i mod p, for i = 1 , 2 , · · · , m 

 

′ 
0 = s · y 0 mod p, where y 0 < α is a random number (3) 

nd sends (α, p, � c i , � c ′ 
i 
) to SP. Because of the large prime α, the ran-

om numbers x i , y i and mod p operation, SP is unable to determine

hether a i ∈ 

�
 a is 1 or 0. 

Step 3: After receiving (α, p, � c i , � c ′ 
i 
) , SP chooses three ran-

om numbers t 1 , t 2 , t 3 with the constraints | t 2 | < | α|, | t 3 | < | α|,

 t 1 · t 2 | > | α2 |, | t 1 + t 3 · α| < | α2 | , and computes the vectors � D , � D 

′ ,
here 

D i = α · b i · c i , D 

′ 
i = α · b i · c ′ i mod p, for i = 1 , 2 , · · · , m 

 

′ 
0 = t 3 · c ′ 0 mod p (4) 

hen, SP computes 

D = t 2 ·
( 

m ∑ 

i =1 

D i + γ · α2 − S th · α2 + t 1 

) 

 

′ = t 2 ·
( 

m ∑ 

i =1 

D 

′ 
i + D 

′ 
0 

) 

(5) 

SP will now return ( D, D 

′ ) to U l , without revealing the values

 i ∈ 

�
 b i and the threshold of the disease risk S th to U l . 

Step 4: Upon receiving the data ( D, D 

′ ), U l first computes 

 

′ = s −1 · D 

′ mod p, E = (D + E ′ ) mod β (6)

inally, U l can determine the result from the bit length of E . If

 E| = | β| , then U l can determine � a · � b + γ < S th . Otherwise, � a · � b +
≥ S th . 

Correctness. The correctness of PPCP can be illustrated as fol-

ows: Given the constraints of the security parameters shown

bove, we obtain: 

2 l 2 + l 1 + l 3 + l 4 + l 5 < l 0 − 1 

⇒ α2 · m · q · r i · β < p/ 2 (7) 

n addition, the relationship of α and p can be calculated as fol-

ows: 

3 l 2 + l 4 + l 5 < l 1 , l 1 < l 0 

⇒ 3 l 2 + l 4 + l 5 < l 0 − 1 ⇒ 3 l 2 < l 0 − 1 

⇒ α3 < p/ 2 (8) 

In step 3, SP receives the data and calculates: 

D i = α · b i · c i = α · b i · (α · a i + x i ) = α2 · a i · b i + α · b i · x i 

D 

′ 
i = α · b i · c ′ i = α · b i · s · y i mod p, for i = 1 , 2 , · · · , m 

 

′ 
0 = t 3 · c ′ 0 = t 3 · s · y 0 mod p (9) 

hen, SP can compute ( D, D 

′ ), where 

D = t 2 ·
( 

α2 ·
m ∑ 

i =1 

a i · b i + α ·
m ∑ 

i =1 

b i · x i + α2 · γ − α2 · S th + t 1 

) 

 

′ = t 2 ·
( 

α ·
m ∑ 

i =1 

b i · s · y i + t 3 · s · y 0 

) 

mod p (10) 

In step 4, U l removes the factor s from D 

′ by multiplying

 

−1 mod p: 
 

′ = s −1 · D 

′ = s −1 t 2 ·
( 

α ·
m ∑ 

i =1 

b i · s · y i + t 3 · s · y 0 

) 

mod p 

= t 2 ·
( 

α ·
m ∑ 

i =1 

b i · y i + t 3 · y 0 

) 

mod p 

∵ (t 2 ·α·∑ m 
i =1 b i ·y i ) < (α2 ·m ·q ·r i ·β) <p/ 2 Eq. (7) −−−−−−−−−−−−−−−−−−−−−−−−−−−→ 

∵ and (t 2 ·t 3 ·y 0 ) <α3 <p/ 2 Eq. (8) −−−−−−−−−−−−−−−−−−−−−→ 

= t 2 ·
( 

α ·
m ∑ 

i =1 

b i · y i + t 3 · y 0 

) 

(11) 

n the last calculation, U l obtains 

 = D + E ′ = t 2 ·
( 

α2 ·
m ∑ 

i =1 

a i · b i + α ·
m ∑ 

i =1 

b i · x i 

+ α2 · γ − α2 · S th + t 1 + α ·
m ∑ 

i =1 

b i · y i + t 3 · y 0 

) 

mod β

= t 2 ·
[ 

α2 ·
( 

m ∑ 

i =1 

a i · b i + γ − S th 

) 

+ α ·
m ∑ 

i =1 

b i · β + t 1 + t 3 · y 0 

] 

mod β (12) 

Let k gap = | β| − | α2 | − | q | − | t 2 | , and k gap > 200. For example,

 α| = 160 , | β| = 700 , | p| = 1024 , | t 1 | = 300 , | t 2 | = 100 , | t 3 | = 100 ,

 q | = 16 . If 
∑ m 

i =1 a i · b i + γ − S th ≥ 0 , Eq. (12) becomes 

 = t 2 ·
[ 

α2 ·
( 

m ∑ 

i =1 

a i · b i + γ − S th 

) 

+ t 1 + t 3 · y 0 

] 

mod β

∵ k gap = | β|−| α2 |−| q |−| t 2 | ,k gap > 200 , t 2 ·(t 1 + t 3 ·y 0 ) <α3 <β and | α3 | < | β| −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 

= t 2 ·
[ 

α2 ·
( 

m ∑ 

i =1 

a i · b i + γ − S th 

) 

+ t 1 + t 3 · y 0 

] 

(13) 

ecause | t 1 + t 3 · α| < | α2 | , the length of E is dominated by t 2 ·
2 ·

(∑ m 

i =1 a i · b i + γ − S th 
)
, that is, | E| ≈ | α2 | + | q | + | t 2 | 	 | β| . It is

asy to observe that the bit length of E is much less than that of

when 

∑ m 

i =1 a i · b i + γ − S th > = 0 . 

On the other hand, if 
∑ m 

i =1 a i · b i + γ − S th < 0 , Eq. (12) be-

omes 

 = t 2 · α2 ·
( 

m ∑ 

i =1 

a i · b i + γ − S th 

) 

+ β

+ 

( 

t 2 · α ·
m ∑ 

i =1 

b i − 1 

) 

· β + t 2 · ( t 1 + t 3 · y 0 ) mod β

= t 2 · α2 ·
( 

m ∑ 

i =1 

a i · b i + γ − S th 

) 

+ β

+ t 2 · (t 1 + t 3 · y 0 ) mod β

∵ t 2 ·α2 ·( ∑ m 
i =1 a i ·b i + γ −S th )+ β<β, t 2 ·(t 1 + t 3 ·y 0 ) <α3 <β and | α3 | < | β| −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 

= t 2 · α2 ·
( 

m ∑ 

i =1 

a i · b i + γ − S th 

) 

+ β + t 2 · (t 1 + t 3 · y 0 ) (14) 

ecause t 2 · (t 1 + t 3 · y 0 ) < α3 < β, t 2 · α2 ·
(∑ m 

i =1 a i · b i + γ − S th 
)

<

 and | t 2 · α2 ·
(∑ m 

i =1 a i · b i + γ − S th 
)| 	 | β| , we have the length of

 dominated by β , that is, | E| = | β| . 
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From the above observations, U l can distinguish the disease risk

from the bit length of E . Thus, the correctness of the PPCP protocol

is satisfied. 

Recommendation of hospitals. After diagnosing several diseases

Y = { y 1 , y 2 , . . . , y w 

} using the proposed PPCP protocol, the user U l

can choose a disease y i ∈ Y that he/she wishes to seek treatment

for. SP will query all hospitals within U l ’s district or vicinity (e.g.

whether these hospitals have medical doctors available to treat this

disease) without SP knowing the specific disease. Then SP forwards

the encrypted response from hospitals to U l . Note that, the number

of the hospitals within U l ’s vicinity should not be large. It does not

take much time for U l to decrypt these responses and determine

which hospital(s) had replied with a “yes”. It is trivial to note that

the privacy-preserving recommendation protocol helps to ensure

that the privacy of the user’s disease / treatment sought is pre-

served. In addition, only authenticated hospitals are recommended

to the user. 

Step 1: The app on U l ’s smartphone first chooses a random

number s ∈ Z 

∗
q , computes sk = e (g, g) xs and c = (c 1 , c 2 , c 3 ) as 

c 1 = g s , c 2 = A 

s · h 

−s 
1 , c 3 = h 

−s 
2 (15)

Note that, in this scenario, the location privacy preservation for

user is currently not considered, as it is not as critical as the

user’s sensitive health information. Thus, U l sends Enc sk (y i ) , c =
(c 1 , c 2 , c 3 ) and the current location to SP. SP chooses hospitals

within the user’s district or vicinity and sends them the encrypted

message ( Enc sk ( y i ), c 1 , c 2 , c 3 ). 

Step 2: Upon receiving ( Enc sk ( y i ), c 1 , c 2 , c 3 ), each hospital H j

will perform the following steps: 

• Uses the access control key ak j = (g x + at j1 , g t j1 , g t j2 , h 
t j1 
1 

· h 
t j2 
2 

) to

compute 

sk = 

e (c 1 , g 
x + at j1 ) 

e (g t t1 , c 2 ) · e (g t j2 , c 3 ) · e (h 

t j1 
1 

h 

t j2 
2 

, c 1 ) 

= 

e (g s , g x g at j1 ) 

e (g g j1 , g as · h 

−s 
1 

) · e (g t j2 , h 

−s 
2 

) · e (h 

t j1 
1 

h 

t j2 
2 

, g s ) 

= 

e (g s , g x ) e (g s , g at j1 ) 

e (g t j1 , g as ) e (g t j1 , h 

−s 
1 

) e (g t j2 , h 

−s 
2 

) e (h 

t j1 
1 

h 

t j2 
2 

, g s ) 

= 

e (g s , g x ) 

e (g s , h 

t j1 
1 

h 

t j2 
2 

) −1 e (h 

t j1 
1 

h 

t j2 
2 

, g s ) 
= e (g, g) xs (16)

• Computes y i = Dec sk (Enc sk (y i )) . The hospital information sys-

tem (HIS) in each hospital H j will return Enc sk ( yes | timestamp ) to

SP if they have the medical doctor available to treat the patient

y i , otherwise they will return Enc sk ( no | timestamp ) 

• SP collects the encrypted responses from the participating hos-

pitals and forwards them to U l . As the number of the hospitals

within U l ’s vicinity is not large, it will not require U l to spend

much time in decrypting the responses and determining which

hospitals had responded with a “yes”. Therefore, the hospital

recommendation system will reduce the waiting time due to a

mismatch or going to a hospital that does not have an appro-

priate or available medical doctor to treat the patient. 

5. Security analysis 

In this section, we analyze the security of our proposed

PGuide scheme, particularly focusing on how the proposed

PPCP protocol can achieve the privacy-preservation of a user’s

health profile (A = 

�
 a = { a 1 , a 2 , . . . , a m 

} ) and the SP’s IP (B = 

�
 b =

{ b 1 , b 2 , . . . , b m 

} , γ , S th ) in the disease diagnosis phase. We will also

examine the privacy-preservation of the disease information in the

hospital recommendation phase. 
• Security of health profile in user query. In a user query in

Guide, sensitive health profile information is encrypted by the

PCP scheme. A query consists of two vectors � c = (c 1 , . . . , c m 

) , � c ′ =
(c ′ 

0 
, c ′ 

1 
, . . . , c ′ m 

) and two large prime numbers α, p . As SP is honest-

ut-curious, it may attempt to recover � a = (a 1 , . . . , a m 

) using ex-

austive attacks on 

�
 c and 

�
 c ′ . However, the components � c and 

�
 c ′ 

an be viewed as an equation group of 2 m equations with 4 m + 1

nknowns s , ( x i , y i , a i , w i ), for i = 1 , 2 , . . . , m, as below 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c 1 = α · a 1 + x 1 
. . . 

c m 

= α · a m 

+ x m 

c ′ 1 = s · y 1 mod p 
. . . 

c ′ m 

= s · y m 

mod p 

⇒ 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

c 1 = α · a 1 + x 1 
. . . 

c m 

= α · a m 

+ x m 

c ′ 1 = s · y 1 + w 1 · p, w 1 ∈ Z ≥0 

. . . 
c ′ m 

= s · y m 

+ w m 

· p, w m 

∈ Z ≥0 

Because the number of unknowns (i.e. 4 m + 1 ) is more than

hose in the equations (i.e. 2 m ), this equation group is not de-

ermined. That is, SP is unable to learn 

�
 a by solving this equation

roup. 

• Security of SP’s disease risk model. The user is also honest-

ut-curious, and may seek to recover the coefficients of disease

isk model and the threshold by generating and solving an over-

etermined polynomial equation group. If we do not include the

andom numbers t 1 , t 2 , t 3 , the user may reveal the disease risk

odel ( � b = { b 1 , b 2 , . . . , b m 

} , γ , S th ) as follows. 

i) A user may attempt to reveal the disease risk model by attacking

 . Without t 1 , t 2 , t 3 , after issuing a query with 

∑ m 

i =1 a i · b i + γ −
 th > 0 , the user can obtain the encrypted value 

 = α2 ·
( 

m ∑ 

i =1 

a i · b i + γ − S th 

) 

+ α ·
m ∑ 

i =1 

b i · β mod β

∵ | α2 ·( 
∑ m 

i =1 a i ·b i + γ −S th ) | < | β| −−−−−−−−−−−−−−−−−−→ 

= α2 ·
( 

m ∑ 

i =1 

a i · b i + γ − S th 

) 

The unknowns in E are the coefficients { b 1 , b 2 , ���, b m 

}, the in-

ercept γ and the threshold S th of the disease model. After issuing

 queries with k different � a , a group of k equations and m + 2 un-

nowns { b 1 , b 2 , ���, b m 

}, γ , S th can be generated. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E 1 = α2 ·
( 

m ∑ 

i =1 

a i, 1 · b i + γ − S th 

) 

. . . 

E k = α2 ·
( 

m ∑ 

i =1 

a i,k · b i + γ − S th 

) 

Once k is more than m + 2 , the number of unknowns is less

han those in the equations. Consequently, this equation group

s over-determined and the disease risk model can be revealed.

n order to prevent such an attack, we configure two random

umbers t 1 and t 2 . For each user query, t 2 is a distinct ran-

om number, which increases the number of unknowns linearly

ith the number of queries. Thus, the equation group is not de-

ermined. However, if we only configure t 2 without t 1 , a user

ay reveal α2 ·
(∑ m 

i =1 a i · b i + γ − S th 
)

based on two queries with

he same vector �
 a , i.e., the common divisor of E j = t 2 , j · α2 ·∑ m 

i =1 a i · b i + γ − S th 
)
, for j = 1 , 2 . After obtaining m + 2 compo-

ents α2 ·
(∑ m 

i =1 a i · b i + γ − S th 
)
, f or j = 1 , 2 , . . . , m + 2 , a user can

lso reveal the disease risk model as above. Therefore, to deal with

his vulnerability, we add the random number t 1 . Then, with two

ueries on the same � a , a user can get 
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Fig. 3. Prototype: Android app for Pre-disease Diagnosis. 
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 j = t 2 , j · α2 ·
( 

m ∑ 

i =1 

a i · b i + γ − S th 

) 

+ t 2 , j · t 1 , j , j = 1 , 2 

f | t 1, j · t 2, j | < | α2 |, then t 2 , j · α2 ·
(∑ m 

i =1 a i · b i + γ − S th 
)

can be de-

ived from E j − E j mod α2 . Then again, the disease risk model can

e revealed using the above attack. Therefore, we need the con-

traint | t 1 · t 2 | > | α2 | to prevent such an attack. 

ii) A user may also attempt to reveal the disease risk model by

ttacking E ′ . If we configure t 1 , t 2 without t 3 , in step 4, the user

an obtain the value 

 

′ = t 2 · α ·
( 

m ∑ 

i =1 

b i · y i 

) 

mod p 

Then, the user can reveal α · ( ∑ m 

i =1 b i · y i ) from the two queries

ssued to the same vector � y = (y 1 , y 2 , . . . , y m 

) (i.e. the common di-

isor of E ′ 
j 
= t 2 , j · α · ( ∑ m 

i =1 b i · y i ) , j = 1 , 2 ). 

To prevent such an attack, we configure a random number t 3 
n c ′ 0 = s 0 · y 0 mod p. Then, in step 4, the user obtains 

 

′ = t 2 · α ·
( 

m ∑ 

i =1 

b i · y i 

) 

+ t 2 · t 3 · y 0 mod p 

n addition, the constraint | t 1 + t 3 · α| < | α2 | is necessary, which

revents the random numbers from changing the result in E . 

• Security of disease information and authentication of hospitals

n hospital recommendation protocol. It is easy to see that e ( g,

 ) xs can be recovered only by a registered hospital H j ∈ H with

ts access key ak j = (g x + at j1 , g t j1 , g t j2 , h 
t j1 
1 

h 
t j2 
2 

) from (c 1 = g s , c 2 =
 

s · h −s 
1 

, c 3 = h −s 
2 

) , and the information about the disease y i can

nly be obtained using the appropriate symmetric key e ( g, g ) xs 

nd Dec (). There are many common diseases can be treated in

ifferent hospitals [17] , and SP only receives encrypted feedback

nc sk ( yes | timestamp ) or Enc sk ( no | timestamp ) from the participating

ospitals. Therefore, SP will not be able to learn the details of the

isease. In addition, only the hospitals who have registered with

A will have the access control key ak j = (g x + at j1 , g t j1 , g t j2 , h 
t j1 
1 

·
 

t j2 
2 

) to decrypt the encrypted user request. Such an authenti-

ation scheme prevents non-registered and non-vetted hospitals

rom participating. 

Based on the above security analysis, we have shown that our

roposed PGuide scheme provides privacy preservation for user

ealth profile, disease and SP’s disease risk prediction model, as-

uming that there is no collusion between hospitals and SP. 
Table 3 

Experiment setup. 

(a) Testbed setting 

Role Machine Hardware & So

SP PC 3.1. GHz proces

Medical user MI-ONE Plus Android 4.1.2 s

Hospital Mac Pro 2.9 GHz process

(b) Parameter setting for pre-disease diagnosis 

Parameter | α| | β| | p | |

Setting 160 700 1024 3

(c) Parameter setting for hospital recommendation 

Parameter Curve q 

Setting y 2 = x 3 + x q =
. Performance evaluation 

In this section, we evaluate our proposed PGuide scheme in two

tages (i.e. Pre-disease Diagnosis; and Recommendation of Hospi-

als), in terms of computational cost and communication overhead.

.1. Pre-disease diagnosis 

Experimental setup. We design a PGuide Android app, as shown

n Fig. 3 , in addition to a server side application and a hospital

ide application on the Tomcat Apache server 8. To ensure repeata-

ility, the detailed experimental settings are outlined in Table 3 .

n order to demonstrate the efficiency of PPCP in Pre-disease Di-

gnosis, we also develop a scheme with the same function of

PCP but built using a typical Paillier encryption with modulus

 n 2 | = 2048 [18] as a baseline comparison. We choose the length

f vectors � a , � b as m = { 10 , 20 , 30 , 40 , 50 , 60 , 70 , 80 , 90 , 100 } in the

xperiments, and run the experiments 100 times. The average re-

ults of these 100 experiments are reported below. 

Computational cost for Pre-disease Diagnosis Fig. 4 (a) and (b)

lot the computational costs with varying vector lengths from 10

o 100. From Fig. 4 (a), it is clear that our proposed PGuide scheme

s significantly faster than the Pailliar-based scheme. As our pro-

osed PGuide scheme does not employ computationally expen-

ive operations, user’s cost requirement is low, and significantly

ower than the computational cost in the Paillier-based scheme. As

hown in Fig. 4 (b), the server’s computational costs in the Paillier-

ased scheme are low with the vector length m because all the
ftware 

sor, 8GB RAM and Window 7 platform 

ystem, dual core 1.5 GHz processor, and 1 GB RAM 

or, 8GB RAM and OSX Yosemite platform 

 t 1 | | t 2 | | t 3 | | q | | r i | 

00 100 100 16 100 

| r | | q | 

 3 mod 4 160 512 
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Fig. 4. Comparative Summary: Computational time, length of ciphertext with different vector lengths in the pre-disease diagnosis process. 

Fig. 5. Comparative Summary: Length of ciphertext with different vector lengths. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Hospital recommendation Android app. 

 

s  

c  

d  

r

c  

t  

t  

l  

A  

i  

p  

q

 

s  

n  

p  

o  

d  

T  

b  

a  

c

 

s  

s  

s  

c  
disease coefficients b i are small integers and the exponent opera-

tion of ciphertext Enc(a i ) 
b i does not require much time. Nonethe-

less, the computational cost of our proposed PGuide scheme at the

server-end is still significantly less than that of the Paillier-based

scheme at the server-end, as we do not require any expensive ex-

ponent operations. 

Communication overhead for Pre-disease Diagnosis Fig. 5

plots the communication overhead with varying vector lengths (i.e.

m from 10 to 100). Based on the above parameter settings, the

length of � c is the same as the length of (β + x i ) · m, which is

(700 + 100) m . The length of � c ′ is at most the same as the length

of m · p , which is 1024 m . The lengths of α and p are | α| = 160 and

| p| = 1024 . Therefore, the length of the ciphertext ( � c , � c ′ , α, p) in

the proposed PGuide scheme is at most 1184 + 1824 m bits. On the

other hand, the length of m ciphertext of Paillier-based scheme is

the same as the length of n 2 · m (2048 m ), which is larger than that

of our proposed PGuide scheme. 

6.2. Recommendation of hospitals 

Experimental setup. In our Hospital Recommendation Android

app (see Fig. 6 , the user can choose a disease in the disease list

page as well as obtaining the corresponding recommendation. We

adopt JPBC library [19] to implement the underlying pairing algo-

rithm, where the detailed parameters are shown in Table 3 (c). In

addition, a 128-bit symmetric encryption algorithm is used to en-

crypt the user request. We used the SHA-256 hash function to hash

the pairing element e ( g, g ) xs to a 256-bit length key, which is trun-

cated to the 128-bit length symmetric encryption key. 
In our experiments, the pairing parameters were generated and

tored in a file. Android users store this parameter file in the SD-

ard, and the hospital-side application stores the file on the local

isk. For the user-end, it is not costly to compute the symmet-

ic key sk and c = (c 1 , c 2 , c 3 ) because users can conduct a one-off

alculation of the keys offline. The time-consuming processes are

he computations of the symmetric key sk with c = (c 1 , c 2 , c 3 ) and

he access control key ak for the hospital-side because of the bi-

inear pairing calculations. In addition, we developed a common

ES encryption as a reference for comparison. For a fair compar-

son of computation complexity (i.e. response time and through-

ut), we used Apache JMeter to simultaneously send n user re-

uests. n = { 10 0 , 20 0 , . . . , 10 0 0 } . The results are reported below. 

Computational cost for Recommendation Fig. 7 (a) and (b)

how the average response time and throughput with a varying

umber of user requests. The average response time of our pro-

osed single-attribute encryption protocol is nearly twice of that

f common symmetric encryption-based protocol. Our recommen-

ation protocol is based on AES and Bilinear Pairing encryption.

his is more time-consuming than common symmetric encryption

ased protocol with a given key. The gaps illustrated in Fig. 7 (a)

nd (b) are acceptable for practical applications, while our proto-

ol offers convenience in terms of key management. 

Fig. 8 (a) shows that the message encryption time for the user-

ide grows linearly over the number of hospitals for common

ymmetric encryption based protocol while that of our proposed

ingle-attribute encryption protocol remains constant. This is be-

ause the common symmetric encryption based protocol generates
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Fig. 7. Recommendation of hospitals Android app. 

Fig. 8. Comparative Summary: Key generation time, key sizes for user-side and communication cost with varying number of hospitals. 

Fig. 9. Comparative Summary: Communication costs. 
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s many messages as the number of hospitals, while our proposed

rotocol performs a one-off offline calculation of c = (c 1 , c 2 , c 3 ) ,

nd encrypts the message online only once in every request. In

ddition, Fig. 8 (b) illustrates that the key size of user-side grows

inearly with the number of hospitals for the common symmet-

ic encryption based protocol. The large number of keys could be

eaked if users are required to maintain the keys of all hospitals.

ur proposed protocol solves this key management issue. 

Communication overhead for Recommendation Fig. 9 illus-

rates the computational overhead comparative summary between

ur proposed protocol and the common symmetric encryption

ased protocol. In our protocol, the length of G is 128 bytes, and

e assume that the length of the disease name Y is 24 bytes,
i 
hen the length of the payload for medical user request c 1 , c 2 ,

 3 , Enc sk ( Y i ) is 128 ∗ 3 + 24 bytes. On the other hand, for the com-

on symmetric encryption based protocol, the user has to encrypt

s many pieces of disease information as the number of hospitals

ust for one recommendation. Therefore, our proposed protocol is

learly more practical when compared with the common symmet-

ic encryption based protocol, which has the linearly incremental

essage size. 

. Related work 

In this section, we briefly discuss existing literature on disease

isk prediction [20–23] and privacy-preserving secure comparison

lgorithms. As early diagnosis of disease can minimize the side-

ffects, saf ety risks, financial costs, etc, disease risk prediction has

ttracted the attention of medical and bioinformatics researchers.

or example, in 2012, Anooj et al. [20] develop a fuzzy rule-based

ecision support system for the prediction of heart disease. In

013, Bouwmeester et al. [13] use the multivariate logistic regres-

ion technique to develop a risk prediction model, in which a lin-

ar combination of predictors associated with multiple symptoms

nd environmental data are used to fit a logarithmic transforma-

ion of the probability of the tested disease. This is no doubt a

opical research area, particularly in the use of big data analytics

nd ensuring that the privacy of user and healthcare-related data

s preserved. 

Based on the Paillier encryption, Ayday et al. [11] introduce a

rivacy-preserving disease prediction scheme. However, due to its

ime-consuming exponential operations, the proposed scheme is

ot efficient in calculating the privacy-preserving comparison re-

ults. In our proposed PPCP protocol, however, the protocol does

ot require any time-consuming operations, and as evident in the
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above performance evaluations, the protocol is significantly more

efficient, in terms of computational cost and communication over-

head. 

Katzenbeisser et al. [24] introduce privacy-preserving recom-

mendation systems, which use homomorphic public-key encryp-

tion schemes such as Paillier cryptosystm. We have illustrated that

the public-key encryption scheme is very time-consuming. Com-

mon symmetric encryption based systems (e.g. [25] ) are very ef-

ficient, but key management becomes a challenging issue. In this

work, we address the key management issue as each user only

needs to store a key. 

In comparison to the above privacy-preserving disease risk pre-

diction models which use time-consuming homomorphic encryp-

tion system, our disease risk prediction model is very efficient due

to our PPCP protocol. In addition, we modify the original symmet-

ric encryption system in our hospital recommendation protocol to

increase the efficiency of key generation and storage, which results

in the proposed pre-clinical guide scheme being practical for real-

world deployment. 

8. Conclusions 

In this paper, we have proposed an efficient and privacy-

preserving pre-clinical guidance scheme (PGuide). The scheme has

two key phases. Firstly, it employs an efficient privacy-preserving

comparison protocol (PPCP), which enables a user to obtain disease

risk predication services from a service provider without compro-

mising the privacy of the user and the server provider. Secondly,

it employs a single-attribute encryption technique to conduct an

efficient privacy-preserving hospital recommendation service. Our

security analysis demonstrated that the PPCP and hospital rec-

ommendation service achieve the privacy-preserving requirements.

Evaluations using our Android app prototype demonstrated the ef-

ficiency and practicality of real-world deployment of our scheme.

Future work will include extending the scheme to cover a wider

range of attacks, as well as collaborating with a hospital to roll out

the scheme. 
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